Deficiency of Cbl-b gene enhances infiltration and activation of macrophages in adipose tissue and causes peripheral insulin resistance in mice.

نویسندگان

  • Katsuya Hirasaka
  • Shohei Kohno
  • Jumpei Goto
  • Harumi Furochi
  • Kazuaki Mawatari
  • Nagakatsu Harada
  • Toshio Hosaka
  • Yutaka Nakaya
  • Kazumi Ishidoh
  • Toshiyuki Obata
  • Yousuke Ebina
  • Hua Gu
  • Shin'ichi Takeda
  • Kyoichi Kishi
  • Takeshi Nikawa
چکیده

OBJECTIVE c-Cbl plays an important role in whole-body fuel homeostasis by regulating insulin action. In the present study, we examined the role of Cbl-b, another member of the Cbl family, in insulin action. RESEARCH DESIGN AND METHODS C57BL/6 (Cbl-b(+/+)) or Cbl-b-deficient (Cbl-b(-/-)) mice were subjected to insulin and glucose tolerance tests and a hyperinsulinemic-euglycemic clamp test. Infiltration of macrophages into white adipose tissue (WAT) was assessed by immunohistochemistry and flow cytometry. We examined macrophage activation using co-cultures of 3T3-L1 adipocytes and peritoneal macrophages. RESULTS Elderly Cbl-b(-/-) mice developed glucose intolerance and peripheral insulin resistance; serum insulin concentrations after a glucose challenge were always higher in elderly Cbl-b(-/-) mice than age-matched Cbl-b(+/+) mice. Deficiency of the Cbl-b gene significantly decreased the uptake of 2-deoxyglucose into WAT and glucose infusion rate, whereas fatty liver was apparent in elderly Cbl-b(-/-) mice. Cbl-b deficiency was associated with infiltration of macrophages into the WAT and expression of cytokines, such as tumor necrosis factor-alpha, interleukin-6, and monocyte chemoattractant protein (MCP)-1. Co-culture of Cbl-b(-/-) macrophages with 3T3-L1 adipocytes induced leptin expression and dephosphorylation of insulin receptor substrate 1, leading to impaired glucose uptake in adipocytes. Furthermore, Vav1, a key factor in macrophage activation, was highly phosphorylated in peritoneal Cbl-b(-/-) macrophages compared with Cbl-b(+/+) macrophages. Treatment with a neutralizing anti-MCP-1 antibody improved peripheral insulin resistance and macrophage infiltration into WAT in elderly Cbl-b(-/-) mice. CONCLUSIONS Cbl-b is a negative regulator of macrophage infiltration and activation, and macrophage activation by Cbl-b deficiency contributes to the peripheral insulin resistance and glucose intolerance via cytokines secreted from macrophages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of Cbl-b-mediated macrophage inactivation in insulin resistance

Aging and overnutrition cause obesity in rodents and humans. It is well-known that obesity causes various diseases by producing insulin resistance (IR). Macrophages infiltrate the adipose tissue (AT) of obese individuals and cause chronic low-level inflammation associated with IR. Macrophage infiltration is regulated by the chemokines that are released from hypertrophied adipocytes and the immu...

متن کامل

Cbl-b Is a Critical Regulator of Macrophage Activation Associated With Obesity-Induced Insulin Resistance in Mice

We previously reported the potential involvement of casitas B-cell lymphoma-b (Cbl-b) in aging-related murine insulin resistance. Because obesity also induces macrophage recruitment into adipose tissue, we elucidated here the role of Cbl-b in obesity-related insulin resistance. Cbl-b(+/+) and Cbl-b(-/-) mice were fed a high-fat diet (HFD) and then examined for obesity-related changes in insulin...

متن کامل

Effects of Endurance Training on the Expression of Cathepsin B (CTSB) and Cathepsin L (CTSL) genes in the Adipose Tissue of Mice with a High-Fat Diet

Introduction: In high-fat diet-induced obesity, the levels of cathepsin L (CTSL) and cathepsin B (CTSB) increase in adipocytes, resulting in insulin resistance in the adipose tissue. In this study, the preventive effect of endurance training on the gene expression of CTSL and CTSB was investigated in the adipose tissue of mice with a high-fat diet. Materials and Methods: Twenty-one male mice (a...

متن کامل

Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue

Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macr...

متن کامل

Inflammation and adipose tissue macrophages in lipodystrophic mice.

Lipodystrophy and obesity are opposites in terms of a deficiency versus excess of adipose tissue mass, yet these conditions are accompanied by similar metabolic consequences, including insulin resistance, dyslipidemia, hepatic steatosis, and increased risk for diabetes and atherosclerosis. Hepatic and myocellular steatosis likely contribute to metabolic dysregulation in both states. Inflammatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 56 10  شماره 

صفحات  -

تاریخ انتشار 2007